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Abstract
Thewidespread availability of satellite imagery and image processing software has made it relatively easy for ecologists to use satellite imagery

to address questions at the landscape and regional scales. However, as often happens with complex tools that are rendered easy to use by computer

software, technology may be misused or used without an understanding of some of the limitations or caveats associated with a particular

application. The results can be disappointment when maps are less accurate than expected or incorrect decisions when they are treated as truth. In

this paper, we discuss several key issues which are critical to ensuring the effectiveness and value of remote sensing products, but which are also

sometimes sources of confusion: (1) direct versus indirect models of land surface properties and processes, (2) differences between class-based and

continuous mapping models, (3) scale, and (4) accuracy assessment. We illustrate our points with examples from the application of satellite

imagery to forest management issues in the Pacific Northwest, USA. While our examples focus largely on Landsat image data, the issues we

discuss have broad relevance across sensor data types, land cover properties, and geographic locations.
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1. Introduction

In recent years, the use of satellite imagery in ecological

research and ecosystem management has increased signifi-

cantly. For example, 9 of 10 recent issues of the journal

Ecological Applications contain at least one article in which

satellite imagery was used to characterize vegetation or land

cover. The widespread availability of imagery and image

processing software has made it relatively easy for ecologists to

employ satellite imagery to address questions at landscape and

regional scales. However, as often happens with complex tools

that are rendered easy to use by computer software, technology

may be misused or used without understanding some of the

limitations and caveats associated with a particular application.

The promise of satellite imagery to solve landscape research

and management problems has frequently been high (Green,

1994), but some assert that it has not delivered (Meyer and
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Werth, 1990; Holmgren and Thuresson, 1998). Some of the

reasons for ‘‘failures’’ in the application of satellite imagery

may derive from overly optimistic promises by remote sensing

advocates, and from poor understanding by ecologists of the

limits of the technology and the methods used to assess

accuracy.

While there is a substantial body of literature exploring the

application of remote sensing to ecological endeavors, there is a

need for a non-technical overview of fundamental issues that

ecologists should consider when using remote sensing. In this

paper, we provide such an overview with respect to (1) feature

description and spatial representation and (2) accuracy

assessment, illustrating our points with examples from recent

applications of remote sensing in ecological research and

ecosystem management in western Oregon and Washington

(Weyermann and Fassnacht, 2001; Cohen et al., 2001; Ohmann

and Gregory, 2002; Spies et al., 2002; Nighbert et al., public

communication2). We chose the Pacific Northwest for our

examples because satellite imagery has been widely used in
2 WODIP Guidebook, http://www.or.blm.gov/gis/projects/wodip.asp, visited

28 November 2003.

http://www.or.blm.gov/gis/projects/wodip.asp
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Table 1

Hierarchical classification scheme used by Cohen et al. (2001)

Class

Water

Snow and ice

Cloud and shadow

Serpentine

Urban

Agriculture

Other non-forested

Forested

Open canopy

Semi-open canopy

Closed canopy

Broadleaf

Mixed
ecological research here and is increasingly being used to

address ecosystem management problems (e.g., FEMAT, 1993;

Weyermann and Fassnacht, 2001; Spies et al., 2002).

Furthermore, the region is a center of considerable debate

about forest management and biodiversity, creating a real need

for landscape-scale information for assessment and policy

decision-making.

2. Feature description and spatial representation

2.1. Is remote sensing the right tool?

It may seem trivial, but an important first question to address

is: is remote sensing the right tool? When considering this

question, the strengths of the technology must be balanced

against its limitations. Remote sensing can be particularly

useful when there is a need for (1) complete spatial coverage,

especially over large areas; (2) monitoring, or frequently

repeated measurements; or (3) measurements at inaccessible or

sensitive locations. For environmental monitoring and manage-

ment, Phinn et al. (2000) have identified four broad types of

information which can be derived from remote sensing data:

landscape composition, landscape pattern, biophysical para-

meters, and changes in time of these three elements.

The top-down view of remote sensing platforms restricts

what can be ‘‘seen’’ by the sensor. Consequently, many

important ecological variables measured beneath or within the

canopy are not good candidates for direct remote measurement.

For example, the Interagency Vegetation Mapping Project

(IVMP; Weyermann and Fassnacht, 2001) attempted to map

quadratic mean tree stem diameter directly using Landsat

Thematic Mapper data with limited success. Overall accuracies

for four to six structural classes were 33–44% (USDI, public

communication3). Another limitation is that information

recorded by airborne or satellite sensors is typically restricted

to energy returned in one or more wavebands and relative

geographic position. As a result, features that cannot be

distinguished by ‘‘color’’ and spatial arrangement alone may be

confused when using only spectral data.

Fortunately, there are ways to address these shortcomings. If

a variable of interest is not visible from overhead (e.g., soil

nitrogen mineralization rates), it can be calculated by using

remotely sensed values of a visible variable (e.g., foliar lignin

content; Wessman et al., 1988) if the two are statistically

related. Furthermore, if variables cannot be distinguished by

spectral values and spatial location alone, results can be

improved by using ancillary data, such as topography,

ownership, or soils data (e.g., Hutchinson, 1982; Palacio-

Prieto and Luna-Gonzalez, 1996; Eiumnoh and Shrestha,

2000). In addition, multiple image processing techniques (e.g.,

per pixel classifiers and image segmentation) can be combined

with other complementary analyses (e.g., GIS-based ecological

modeling) and data sources (e.g., photointerpretation and field
3 IVMP Datasets, http://www.or.blm.gov/gis/projects/ivmp_data.asp, visited

26 February 2005.
data) to enhance the capabilities of remote sensing alone

(Franklin and Woodcock, 1997).

It is possible, however, that remote sensing technology may

not be able to provide acceptable results for a given objective

(Franklin and Woodcock, 1997; Cohen et al., 2003). In these

cases, remote sensing may not be appropriate. A framework has

been developed which can be helpful in making this evaluation

(Phinn et al., 2000, 2003).

2.2. Information classes

2.2.1. Defining a classification scheme

If data will be divided into groups, there are a number of

factors to consider in developing a classification scheme. When

hard class boundaries are desired, class definitions must be

clear, mutually exclusive, and exhaustive to prevent confusion

and to avoid unlabelled map regions (Congalton and Green,

1999). Mutual exclusivity is not required, however, if soft class

boundaries are to be used (i.e., when features are allowed to

belong to more than one class, e.g., a forest with 60% conifer

might reasonably be considered to belong to either a ‘‘conifer’’

or ‘‘mixed’’ class). In either case, classes should be detailed

enough to be useful, yet not so narrowly defined that they

cannot be spectrally separated from other classes (Lillesand

et al., 1998). Hierarchical classification schemes can help

provide a balance between utility and accuracy by allowing

users to define and organize desired detail, while permitting

classes to be collapsed as needed if accuracies are not

acceptable. For example, using the classification scheme

presented in Table 1, Cohen et al. (2001) were able to provide a

greater level of detail for forest compared to other land cover

classes, and the most detail for closed canopy conifer forests.

If preexisting classification schemes or maps are to be used,

it is important to know how the classes were defined in order to

evaluate how well the scheme/map matches project objectives
Conifer

Young

Mature

Old

http://www.or.blm.gov/gis/projects/wodip.asp
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(Cohen et al., 2001). For example, if a new study seeks to

identify potential habitat for a forest dwelling creature, is a map

that defines forest as any area with over 10% canopy closure

(Anderson et al., 1976) suitable? It depends on the ecology of

the creature being studied. Perhaps a classification scheme that

required at least 60% canopy closure (Scepan, 1999) would be

more appropriate. Without looking into how classes were

defined, it would be easy to assume the map did a poor job of

identifying forested areas or to misidentify areas of suitable

habitat.

2.2.2. Classes versus continuous representations of

information

When features of interest are categorical in nature (e.g., land

cover/land use), techniques are typically used which place

pixels or polygons into classes with either hard or soft

boundaries. Franklin et al. (2003) provide a nice overview of

many classification techniques including more traditional

methods (e.g., maximum likelihood and minimum distance

to mean classifiers) as well as newer methods (e.g., nearest

neighbor and artificial neural networks).

When the features of interest are continuous in nature (e.g.,

leaf area index) or are based on such features (e.g., habitat

suitability based on a tree-size threshold), using classes of any

kind can be restrictive. Maps produced using classes divide

continuous-variable data into arbitrary categories which can be

rendered obsolete if class definitions are changed after the maps

have been completed. Mapping variables continuously removes

artificial class structure and allows multiple projects to use the

same initial map by defining class boundaries for secondary

maps to meet their individual needs (as in IVMP where four or

more end users with still-developing needs would be using the

maps being produced; Fassnacht, personal observation). For

example, a single continuous map of tree density (Fig. 1a) is

easily recoded into two classed maps to accommodate different

habitat-suitability requirements for the marbled murrelet

(Brachyramphus marmoratus) (Fig. 1b; McGrath, unpublished

manuscript) and the northern spotted owl (Strix occidentalis

caurina; Fig. 1c; McGrath, unpublished manuscript). In

addition, changes in class requirements can be accommodated

by reclassing the original continuous map, avoiding the need to

remap the entire area. It should be noted, however, that at times

sufficient data are not available to develop continuous models

or the form of the relationship between independent and

dependent variables is quite complex. Using classification

methods may be preferred in these cases (Franklin et al., 2003).

Major projects in the Pacific Northwest are moving from

using classification (e.g., Nighbert et al., public communica-

tion2) to using continuous mapping methods based on

regression (e.g., Weyermann and Fassnacht, 2001) and gradient

nearest neighbor (Ohmann and Gregory, 2002) analyses.

Although earlier studies using continuous methods focused

primarily on model development (e.g., Franklin, 1986; Running

et al., 1986; Lathrop and Pierce, 1991; Cohen and Spies, 1992),

more recent studies have used these models to map forest

attributes over large areas (e.g., Cohen et al., 2001; Spies et al.,

2002).
Multiple independent regression models, such as those used

by Cohen et al. (2001), however, do not preserve the covariance

among attributes. Joint variability, particularly of species

occurrence and understory and overstory characteristics, is of

interest to ecologists. To retain data covariance, Ohmann and

Gregory (2002) developed a gradient nearest neighbor (GNN)

method, which combines direct gradient analysis and nearest

neighbor imputation (Moeur and Stage, 1995). Ground-

inventory-based values (e.g., species basal area), satellite

spectral data, and ancillary information related to ownership,

topography, geology, climate, and location were combined in a

canonical correspondence analysis to produce a distribution in

eight dimensions. Each pixel was then assigned all the

characteristics of whichever ground plot was closest to it in

this eight-dimensional space.

2.3. Scale

2.3.1. Definitions

Scale is one of the most important characteristics to consider

when matching remote sensing data with natural resource

applications. Because the term ‘‘scale’’ has been inconsistently

defined (Lam and Quattrochi, 1992; O’Neill and King, 1998),

we want to be explicit in its definition here to avoid confusion

(Raffy and Blamont, 2003). In this paper, scale will refer to the

combination of extent, grain, and minimum mapping unit

(MMU). Changing the value of any of these elements changes

the scale. Extent is typically defined as the total physical area to

be examined in a project (project extent) or covered by a data

source (data extent; Fig. 2a), while grain is the smallest

resolvable element in the extent (Turner et al., 2001). In a raster

image, the grain is the pixel size (Fig. 2b); in a photograph, it is

related to the size distribution of silver halide crystals (but is

also influenced by atmospheric effects, uncompensated air-

plane or camera motion, etc.; Lillesand et al., 2003). Minimum

mapping unit, in contrast, is the smallest area in the extent that

will be mapped as a discrete unit (Fig. 2c). Because MMU is

often larger than the grain, spatial and/or content information

contained in the mapping unit is lost. For example, an aerial

photograph polygon labeled as conifer may contain many

conifer trees, a few hardwood trees, and a grassy opening.

These different stand elements are resolvable because of the

grain of the photo, but the analyst decided the latter two were

too small to be considered separately for the map being made.

2.3.2. Choosing appropriate values for scale elements

To get the most from remote sensing data, it is important to

make conscious decisions about scale (Phinn et al., 2000).

Using popular data sources (e.g., Landsat Thematic Mapper

(TM); grain = 28.5 m) or the defaults of the data (i.e.,

MMU = grain) will result in a view of the world that matches

the sensor but not necessarily the question being asked. To

facilitate decision-making, it is helpful to understand how

changing scale elements can affect landscape information.

Increasing extent, for example, increases the probability of

sampling rare classes (Wiens, 1989), whereas increasing grain

size reduces the number of landscape elements that can be
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Fig. 1. (a) A continuous map of trees per hectare with diameter at breast height greater than 75 cm (TPH75) used to create classed maps tailored to habitat-suitability

requirements of (b) the marbled murrelet (Brachyramphus marmoratus) (platform tree index; McGrath, unpublished manuscript) and (c) the northern spotted owl

(Strix occidentalis caurina) (diameter class 3 index; McGrath, unpublished manuscript). Data from Ohmann and Gregory (2002).
resolved. Changes in MMU affect the spatial expression of

patches on the landscape (Fig. 3a–d). Smaller MMUs may

result in large within-patch variability, making patches of

interest difficult to discern (Fig. 3a) and reducing classification

accuracies compared to maps where this variability has been

removed (Fig. 3b and c; Toll (1985) and Irons et al. (1985), but

see Markham and Townshend (1981) and Hsieh et al. (2001)

for a discussion of the compensating effect of fewer mixed

pixels). On the other hand, larger MMUs can result in patches

of interest being artificially combined with surrounding

patches (Fig. 3d).

So what are the optimum extent, grain, and MMU? There is

a large body of literature devoted to this question, which speaks

to both its importance and complexity. Phinn et al. (2003) have

presented a framework for selecting appropriate remote

sensing data for management issues which includes tackling

the scale issue. In case studies presented (Phinn et al., 2000,

2003), initial grain size has typically been selected to equal the

smallest feature that is to be resolved. This size is then

evaluated in subsequent exploratory analyses which some-

times find that a different sizewouldwork better.Marceau et al.
(1994a), in fact, found that the optimum grain size for best

classification accuracy was different for different image

elements. For example, to most accurately classify maple

forest required a grain of 5 m while poplar and birch had

optimal grains of 20 and 30 m, respectively. Likewise, at a

coarser classification level, optimum grain sizes to classify

deciduous, conifer, and mixed forest were 5, 10, and 30 m,

respectively. Based on these results, Marceau et al. (1994a)

recommend abandoning the common practice of selecting a

unique resolution on which to perform analyses, instead

pursuing multi-scale or hierarchical approaches which make

use of logical decision rules.

In general, the factors involved in selecting optimum grain

andMMU are complex. Considerations include not only project

goals and the object of interest, but also the spatial arrangement

of features on the landscape, the internal structure of objects of

interest (e.g., stand characteristics), and the processing

techniques to be used (Woodcock and Strahler, 1987). For

additional discussion on this topic, see Quattrochi and Pelletier

(1991, pp. 67–69), Marceau et al. (1994a,b), Cao and Lam

(1997), Hsieh et al. (2001), and Franklin (2001, pp. 97–103).
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Fig. 2. Examples of increasing (a) extent, (b) grain, and (c) minimum mapping unit (MMU). Values held constant are (a) grain and MMU at 1 m and 1 m2,

respectively; (b) extent at 400 m2; and (c) extent and grain at 400 m2 and 1 m, respectively. Note that (b(ii)) and (c(ii)), both have extent = 400 m2 and MMU = 4 m2.

Both were created from (b(i)) (the same as c(i)) rather than one being created from the other. Figure modified from Turner et al. (1989).
2.3.3. Example

The impacts of decisions about scale can be best appreciated

through an example. To look at the effects of grain and MMU

on landscape metrics, we will use a small area of classified

imagery from the Coast Range of Oregon to compute landscape

metrics for determining wildlife habitat suitability. We consider

four scenarios: (1) grain = 25 m and MMU = 1/16 ha (i.e., one

pixel), created by classifying the raw 25-m-grained imagery

(Fig. 4a); (2) grain = 25 m and MMU = 1 ha, created by

aggregating the map from scenario 1 to produce patches no

smaller than 1 ha (Fig. 4b); (3) grain = 100 m andMMU = 1 ha,

created by resampling the classified map from scenario 1 to

obtain the desired grain and MMU (Fig. 4c); and (4)

grain = 100 m and MMU = 1 ha as in scenario 3, but created

by degrading the raw imagery to a grain of 100 m, and then

reclassifying the image (Fig. 4d). Diagonals were not

considered in determining patches for any scenario.

When the MMU is changed from 1/16 to 1 ha, the number of

patches drops, and patch size and core area increase (Table 2),

especially if the grain stays small (e.g., scenario 2). For a given
MMU, smaller grained images can capture finer details in patch

shape, and therefore, include more small areas into a patch. In

contrast, by making the grain 100 m (scenarios 3 and 4), a 1-ha

unit (pixel) belongs entirely or not at all to a given class, leading

to more blocky, smaller patches (Fig. 4c and d; Table 2). When

small grain is combined with small MMU (e.g., scenario 1),

finer level ‘‘salt-and-pepper’’ variability is captured, leading to

consistently higher edge densities and smaller solid blocks of

any vegetation class (Table 2). Finally, increasing the grain of

the raw imagery prior to classification (scenario 4) fundamen-

tally changed the results, reducing the amount of ‘‘broadleaf’’,

and increasing the amount of ‘‘small and medium mixed’’

(Fig. 4d; Table 2). The tendency of broadleaf cover in this

image subset to form narrow linear features along rivers and

drainage ways made this cover type particularly susceptible to

changes in grain (Turner et al., 1989, 2000).

Obviously the four scenarios resulted in different character-

izations of the landscape. None of these is wrong. A particular

one, however, may be most appropriate given the species of

wildlife being considered, the objectives of determining the
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Fig. 3. The effect of increasing minimum mapping unit (MMU) on the expression of patches and heterogeneity on a landscape (a–d). The grain is 25 m in all cases,

and the feature mapped is quadratic mean diameter (QMD). Unmapped areas (black) were not included in the increase in MMU. Data are from the Interagency

Vegetation Mapping Project (Weyermann and Fassnacht, 2001).
landscape metrics, etc. Also noteworthy is the high degree of

sensitivity of some landscape metrics to changes in scale. Such

sensitivities have been widely noted in the literature (Turner

et al., 1989;Moody andWoodcock, 1995;Wickham andRiitters,

1995; O’Neill et al., 1996; Cain et al., 1997;Wu et al., 2002).Wu

et al. (2002) describe three categories of metrics having

predictable, less-predictable staircase-like, and erratic responses

to changes in scale. Given these sensitivities, they recommend

the use of scalograms (which they describe as ‘‘response curves

of landscape metrics to changing grain size or extent’’) for

describing and comparing landscapes rather than seeking a single

‘‘optimum’’ scale at which to calculate metrics.

2.4. A word about preexisting maps

The decisions discussed in this section are extremely

important for setting the foundation of a project and for

maximizing the utility of remote sensing data. We recognize,

however, that it is not always possible to make a new map for

every project. Nonetheless, when using preexisting maps, there

are tradeoffs: all the decisions made with respect to information

classes, scale, and processing techniques were based on the

needs of the original project. The scale selected for mapping

owl habitat may not work well for studying carbon flux.

Similarly, maps developed regionally may not capture local

variation well (Fig. 5).
3. Accuracy assessment

Although error in remote sensing-derived maps is an

important issue (Verbyla, 1995; Stehman and Czaplewski,

1998; Lowell and Jaton, 1999), users frequently treat error

analysis in a pro-formamanner. That is, users will want to know

if an accuracy assessment has been conducted but may not use

the information in any way beyond establishing their general

confidence level in the map. It is advisable, however, to take the

time to study a map’s accuracy assessment. The assessment

provides not only a general idea of how ‘‘good’’ a map is but

also details on how error is distributed both spatially and non-

spatially, and insight into how further analyses of, or with, the

map might be affected by error. Because a variety of accuracies

can be obtained for the same map simply by modifying the

methods used to calculate those accuracies, it is also

worthwhile to understand how accuracies were computed.

Below we discuss (1) sources of confusion with respect to

accuracy, (2) effects of different methods on reported accuracy,

and (3) impacts of error on further analyses.

3.1. Sources of confusion

Problems can arise when there is uncertainty about what

accuracies are acceptable and misunderstandings about what

accuracies are achievable. The acceptability of map accuracy
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Fig. 4. Landscape scenarios used to illustrate the potential effect of changing grain and minimum mapping unit (MMU) on landscape metrics: (a) scenario 1,

grain = 25 m, MMU = 1/16 ha; (b) scenario 2, grain = 25 m, MMU = 1 ha; (c) scenario 3, grain = 100 m, MMU = 1 ha; and (d) scenario 4, grain = 100 m,

MMU = 1 ha. Scenarios 3 and 4 differ in their resampling procedure. See text for methods used to develop the scenarios, and Table 2 for associated landscapemetrics.

Data from Ohmann and Gregory (2002).
will depend not only on project objectives (e.g., map owl habitat

suitability) and the cost of errors but also on the intended use of

the product (e.g., to learn more about owls, make management

decisions based on where owls live, evaluate policies in effect to

protect owls, etc.). In scientific undertakings, more uncertainty

may be tolerable, particularly if general trends are all that are

needed. Conversely, in management and policy applications,

higher accuracies may be required because information obtained

will be used in decision-making.Given these differences, it is not

possible to set a single threshold of accuracy below which a map

is unacceptable.

The accuracy that is achievable will depend on a number of

factors including the variables mapped, the sensor used, and the

level of detail desired.Studies conducted in the PacificNorthwest

suggest that, in this region, some forest variables aremuch harder

to map accurately than others. Although accuracies frommost of

these studies cannot be compared directly because dissimilar

methods were used to assess error, general trends are apparent

that are consistent across studies. These trends suggest that, using

TM data, forest structural attributes (e.g., tree stem diameter,

basal area, height, etc.) are more difficult to map than forest

composition (conifer cover, hardwood cover), which is more

difficult to map than total green vegetation cover. For example,

the overall accuracy of four to six structure classes was generally

35–45% (Cohen et al., 1995; Ohmann andGregory, 2002; USDI,

public communication3), compared to 50–70% for five compo-
sition classes (Cohen et al., 2001;USDI, public communication3)

and 75–85% for five classes of green vegetation cover (Cohen

et al., 2001; USDI, public communication3). Having realistic

expectations of what accuracies are achievable will allow for

informed decisions regarding the feasibility of a mapping effort

and the advisability of subsequent analyses (e.g., mapping

wildlife habitat suitability, modeling gross primary production,

etc.).

Fortunately, if low accuracies are not acceptable for

variables that are more difficult to map, there are a number

of tradeoffs that can be made to improve results. Additional

resources can be spent to obtain ancillary data or finer grained

spectral data from another sensor (e.g., lidar, digital ortho-

photographs, etc.) to use with, or instead of, the original data

source. Additional data, however, do not guarantee improved

results. Amore promising tradeoff involves decreasing the level

of detail by combining classes. Cohen et al. (1995), for

example, found that decreasing the number of tree-height

classes from five to three increased overall accuracy from 38 to

56%. A decrease to two classes further increased accuracy to

77%. Similar results were observed for the other nine variables

mapped. Collapsing five or six map classes into two or three,

therefore, may result in relatively inexpensive wall-to-wall

maps of variables of interest at an accuracy that is acceptable.

Confusion also can arise when users only look at a map’s

overall accuracy. Distribution of error among classes and
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Table 2

The effect of grain and minimum mapping unit (MMU) on landscape metrics

Class/index Scenario

1a 2b 3c,d 4c,e

Class

Broadleaf

Number of patches 2793 144 356 479

Mean patch size (ha) 0.46 12 4.3 2.2

Percent of landscape (%) 13 17 15 11

Edge density (m/ha) 62 29 31 29

Total core area (ha) 0.81 155 92 16

Number of core areas 8 145 59 15

Mean nearest neighbor

distance (m)

18 105 70 74

Small and medium mixed

Percent of landscape (%) 13 9 11 20

Large and very large mixed

Number of patches 3523 153 433 673

Mean patch size (ha) 0.34 7.6 2.8 2.0

Percent of landscape (%) 12 12 12 13

Edge density (m/ha) 87 26 30 38

Total core area (ha) 0.00 57 38 14

Number of core areas 0 93 31 9

Mean nearest neighbor

distance (m)

21 143 80 68

Small and medium conifer

Percent of landscape (%) 33 32 33 32

Large and very large conifer

Number of patches 2156 120 256 375

Mean patch size (ha) 1.2 21 9.3 5.6

Percent of landscape (%) 25 25 24 21

Edge density (m/ha) 89 34 35 39

Total core area (ha) 200. 714 599 304

Number of core areas 192 193 111 102

Mean nearest neighbor

distance (m)

18 119 80 65

Landscape

Number of patches 19871 794 2111 2961

Mean patch size (ha) 0.50 13 4.7 3.4

Edge density (m/ha) 278 83 95 113

a Grain: 25 m; MMU: 1/16 ha.
b Grain: 25 m; MMU: 1 ha.
c Grain: 100 m; MMU: 1 ha.
d Resampled classified image used for 1/16 ha MMU example.
e Resampled raw imagery, then reclassified it.

Fig. 5. Local variation evident in (a) raw imagery is often captured better by

maps created by using (b) local compared to (c) regional data. In this case, the

local data came from the approximately 300,000 ha, fourth-field Alsea

watershed (shown in light grey in (d); Nighbert et al., public communication2),

whereas the regional data came from the approximately 3 million ha Coast

Province (shown in dark grey in (d); Ohmann and Gregory, 2002). The area

covered by the image subset in (a–c) is show in black in (d).
regions must be considered as well (Franklin, 1991; Janssen and

van derWel, 1994). The overall accuracy reported from an error

matrix does not imply equal error in all classes (Fig. 6a and b).

Producer’s and user’s accuracies (accounting for errors of

exclusion and inclusion, respectively) inform us of differences

in error that may exist among classes (Fig. 6a and c). In

addition, within a class, error is not necessarily distributed in a

spatially uniform manner. Errors may be different at the center

of a patch than at the boundaries between patches, particularly

when the boundary between two cover classes is not sharp.

Accuracy within a class also may differ spatially across a

mapped region if local variation is not accommodated well by a

regional model. In this latter case, separate mapping for each

area of local variability is recommended, if possible.
Project objectives will affect where it is necessary to have

acceptable accuracies. If high rates of error exist for the class or

region of interest in a particular project, a map may be

unacceptable for that project, despite having an acceptable

overall accuracy. For example, using the Fuzz 2 numbers from

Table 3 (discussed in detail below), the overall accuracy is 79%,

which is respectable. The producer’s and user’s accuracies for

‘‘very large conifer’’, however, are 50% and 54%, respectively.

These values may be unacceptable for a project whose main

concern is with very large conifers. Conversely, if error is high

in classes or areas not of interest in a particular project, a map

may be still quite usable if the focus is on classes or areas with

lower error (e.g., the ‘‘broadleaf’’ class in Table 3). Conse-

quently, for a user to evaluate a map’s appropriateness for a

given objective, more must generally be known than an overall,

and maybe even class, accuracy value (Franklin, 1991; Janssen

and van der Wel, 1994).

3.2. Effect of methods

Problems can arise when there is uncertainty about how

accuracy was computed and what types of assessment can be
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Fig. 6. Visualizing differences in error distribution among classes compared to

the (a) error-free situation in a hypothetical landscape with four classes. Shown

here are cases of (b) equal error and (c) error differing by class. Error matrices

and user’s accuracies for (b and c) are shown next to their corresponding maps.

Error was assigned to pixels randomly (within the appropriate class for (c)) to

achieve the user’s accuracies shown for each map. See text for a definition of

user’s accuracy.
compared. In the following examples, we consider the effect on

reported map accuracy of the fuzziness of class boundaries and

sample heterogeneity.

3.2.1. Class boundary fuzziness

In recent years, some scientists have modified error

calculations to reflect fuzzy rather than absolute class

boundaries (Gopal and Woodcock, 1994; Congalton and

Green, 1999; Townsend, 2000). Fuzzy boundaries are an

acknowledgment that an area could reasonably be labeled as

any one of several classes (e.g., hardwood or mixed);

consequently, the area need not be mapped into only one

specific class to be considered correct. In some cases, there has

been a move away from traditional error matrices entirely (e.g.,

Gopal and Woodcock, 1994; McIver and Friedl, 2002). It is not

within the scope of this paper to explore the many facets of this

discussion. Rather, we examine the impact that the use of fuzzy

boundaries can have on estimates of map accuracy and provide

a caution to compare map accuracies only when they have been

computed in a similar fashion.

In the following example, we examine class boundary

effects by comparing three different ways to compute accuracy

from the same data: the traditional hard-boundary approach

(Trad; Table 3) and two fuzzy-boundary approaches (Fuzz 1

and 2; Table 3). The producer’s accuracy of a class is calculated
as the percentagemapped correctly (in black cellswhen using the

traditional approach; Table 3) as a proportion of the total plots

that actually were in that class (column total). So, for the ‘‘open’’

class, using the traditional approach, 16 plots were mapped

correctly as ‘‘open’’ out of 21 total ‘‘open’’ plots in the reference

data set to give a producer’s accuracy of 100% � (16/21) = 76%.

Similarly, user’s accuracy is calculated as the percentagemapped

correctly (in black cells using the traditional approach) as a

proportion of the total plots that were mapped in that class (row

total). So, for the ‘‘open’’ class, using the traditional approach, 16

plots were mapped correctly as ‘‘open’’ out of 18 total plots that

were mapped as ‘‘open’’ to give a user’s accuracy of

100% � (16/18) = 89%. Overall accuracy is calculated as the

sum of all correctly mapped plots (in black cells using the

traditional approach) divided by the total number of cells

mapped. So, for the traditionalmethod, the overall map accuracy

is calculated as 100% � (2 + 16 + 11 + 15 + ��� + 10 + 1)/

152 = 61%.

In a simple example of fuzzy boundaries (Fuzz 1; Table 3),

any class that is within one class (light gray cells) of the

correct reference class is accepted as ‘‘correct’’ (Congalton

and Green, 1999). For example, all ‘‘mixed’’ classes,

regardless of tree size, are considered to be within one class

of ‘‘broadleaf’’. Using the ‘‘open’’ class as an example again,

the producer’s accuracy increases to 100% because the five

‘‘open’’ plots misclassified as ‘‘semi-closed’’ in the traditional

method will now be considered correct under this interpreta-

tion of fuzzy class boundaries. Likewise the user’s accuracy

for ‘‘open’’ has increased to 100%. In fact, producer’s and

user’s accuracies of most classes and overall map accuracy

have increased substantially. A more conservative version of

error matrix modification can involve ‘‘floating’’ class

boundaries, where the acceptability of an observation that

was mapped differently than the reference is determined by a

range centered on the reference value (Congalton and Green,

1999).

Another accuracy-assessment modification involves provid-

ing weights to classes considered acceptable, so that a fraction

of the observations misclassified are considered correct (Cohen

et al., 2001). As an example, the highlighting in Table 3 is used

to represent a number of weights. A perfect match (black) is

given a weight of 1.0. Plots mapped within one class of the

reference (light gray) are given a weight of 0.5, whereas plots

within two classes (dark gray) receive a weight of 0.25. Finally,

all other plots are considered incorrect and receive a weight of 0

(Maiersperger, unpublished data). Accuracy values for this

method (Fuzz 2), are higher than those from the traditional

approach, but not to the extent seen for Fuzz 1.

Although accuracies will vary among different fuzzy-

boundary techniques, in general, they can be expected to result

in higher accuracies than traditional hard-boundary methods.

This observation should be kept in mind when evaluating or

comparing maps.

3.2.2. Sample heterogeneity

Most studies base their accuracy assessments on points or

polygons located in homogeneous conditions (i.e., a single
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Table 3

A comparison of accuracya calculated using three different class boundary definitions: traditional (Trad), and unweighted (Fuzz 1) and weighted (Fuzz 2) fuzzy class

boundaries

a Producer’s accuracy (Producer’s) measures the error of exclusion; user’s accuracy (User’s) measures the error of inclusion. Reference plots mapped correctly can

be found along the main diagonal (black). See text for methodology and color coding. Data from Cohen et al. (2001).
bBlf, broadleaf; Mix, mixed conifer-broadleaf; Con, conifer; S, small; M, medium; L, large; VL, very large.
class; e.g., Perry, 1998; Cohen et al., 2001). Most landscapes,

however, contain many heterogeneous areas. In IVMP, for

example, data from five of the nine physiographic provinces

covering western Oregon and Washington showed that, on

average, almost 60% of inventory plots used were labeled as

heterogeneous (i.e., plots containing roads, ravines, ridges or

sharp edges between forest compositional or structural

elements; Fassnacht, personal observation). This rate

increased substantially (to 80%) for Forest Inventory and

Analysis (FIA) plots (USDA FS, 1990, 1997), which are larger

and located on private lands. Because the majority of

inventory plots used in IVMP were located on systematic

grids, these percentages should be representative of the

landscape as a whole. Therefore, heterogeneous elements can

comprise a significant portion of the landscape and should be

considered.

How different are the accuracies of these heterogeneous

areas compared to that of the homogeneous areas typically

used for map production and assessment? To explore this

question, we examined data from two of the nine IVMP

provinces (USDA/USDI, unpublished data). Accuracy-assess-

ment data were collected on systematic grids associated with

FIA and Current Vegetation Survey (Max et al., 1996)

inventories. Ground plots were located in a variety of

conditions, with one to many cover classes present in a single

plot. These plots were screened for homogeneity into three

groups: A1 = homogeneous, A2 = heterogeneously homoge-

neous (for mixed classes, such as sparse cover or mixed

conifer/hardwood), and A3 = heterogeneous (multiple classes

with edge present, topographic ridge or ravine, and/or road

present). For this analysis, the A1 and A2 plots were
considered ‘‘homogeneous’’ and A3 plots were considered

‘‘heterogeneous.’’

Error was defined as the difference between observed and

predicted values. Predicted values were derived from maps

based on satellite imagery (Weyermann and Fassnacht, 2001);

observed values were based on interpretation of aerial

photographs for all cover variables (Fig. 7a–c) and from

ground inventory data for tree size (Fig. 7d). Because

preliminary exploration of our data suggested that assumptions

of normality and homogeneity of variance had been violated in

some cases, standard analysis of variance and t-tests could not

be used. Rather, we used non-parametric tests to compare

sample variances (Moses test; Daniel, 1978) and means

(Tukey’s quick test; Daniel, 1978). Data were analyzed by

province (pooled across plot type) with homogeneity as the

treatment.

Although results vary, some general trends are apparent.

Estimated error variances were most often significantly

different, with values for homogeneous plots being smaller,

as expected (Fig. 7). Estimated error means were generally not

significantly different (Fig. 7). These results are not surprising:

heterogeneous data would be expected to have higher

variability than homogeneous data. The general lack of

difference in estimated error means, however, is reassuring.

It suggests that the data used to produce the map (i.e.,

homogeneous plots) did not bias the estimate of vegetation

characteristics for the landscape.

What are the implications of these findings? If data are to be

left in continuous (versus class) format, using only homo-

geneous data will lead to a smaller error variance, and if the

predictions are minimally biased, to a more favorable
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Fig. 7. Error distributions for heterogeneous (HET; grey) and homogeneous (HOM;white) samples of (a) percentage of total green vegetation cover, (b) percentage of

conifer cover, (c) percentage of broadleaf cover, and (d) tree size (quadratic mean diameter in inches) from the Olympic Peninsula and western Cascades Oregon. n is

the number of samples, k the number of subsamples per group (Moses test) for both heterogeneous and homogenous plots,m the estimated error mean, s the estimated

error variance, Ho the null hypothesis of equal means or equal variances (two-sided), and subscripts t and m denote statistics for heterogeneous and homogenous

samples, respectively. Note that P-values are not computed by using theMoses test when sample size is relatively small; rather, theHo is rejected or accepted based on

whether a test statistic falls between two critical values.
evaluation of the map than would be the case if data from all

sources were used in the evaluation of accuracy. Given that

heterogeneous data appear to make up a substantial portion of

the landscape, this is important to consider. If data are to be

broken into classes and an error matrix calculated, however,
then any impact will be dependent on the size of the classes

compared to the degree of variability. In this example, the

estimated error variances of both homogeneous and hetero-

geneous data sets (Fig. 7) are smaller than the class sizes

recommended for the IVMP data (i.e., 20–30% classes for
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Fig. 7. (Continued ).
cover, and �20 in (51 cm) classes for quadratic mean diameter

(QMD); O’Neil et al., public communication4). Consequently,

the impact on an error matrix of using only homogeneous data

may be small in this example. Others, however, have found

relatively large impacts. Hammond and Verbyla (1996)

reported increases in accuracy of up to 11% for the same
4 Interagency Vegetation Mapping Project (IVMP): Western Cascades

Washington Province Version 2.0, http://www.or.blm.gov/gis/projects/ivmp_-

province.asp?id=3, visited 28 November 2003.
classification based on more versus less homogeneous

accuracy-assessment data.

Given the results presented above, users of map products

should keep in mind that (1) the calculated accuracies of maps

as a whole may be optimistic if based solely on homogeneous

data and (2) it may be inappropriate to compare map accuracies

that have been calculated by using different sources of data

(homogeneous only versus homogeneous and heterogeneous

combined). It seems clear from the discussion above that

further study is necessary to address the impact of excluding

heterogeneous plots from accuracy-assessment calculations.

http://www.or.blm.gov/gis/projects/wodip.asp
http://www.or.blm.gov/gis/projects/wodip.asp
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3.3. Impact of error

When remotely derived data are used as input to other spatial

models, error will propagate with consequences that are

typically not known or measured. Agumya and Hunter (1999)

employ the term ‘‘fitness for use’’ to describe how scientists

might employ information about the quality of geographic

information. They describe two approaches, a standards-based

approach in which error is compared against a set of existing

standards, and a risk-based approach in which the impact of

uncertainty in the information is expressed in terms of risk in

the decision that is based on that information. The latter

approach requires an understanding of both the limitations of

the geographic information and the decisions that will be made

by using that information. Users often have a reasonable

knowledge of the error in their data but a poor understanding of

the consequences of that error in subsequent decisions or

models. As remote sensing is employed increasingly in policy

and management decisions, users will have to incorporate

estimates of risk associated with decisions based on models.

However, in many natural resource applications, remote

sensing maps are not the only information used in decision-

making. Finer grained ground data that have higher accuracy

are typically used at the project level to make final decisions.

When employed as ancillary information, maps with relatively

high error can still be useful to help set context, prioritize more

intensive analysis, or communicate the big picture to the public.

4. Summary

Over the past two decades, there has been an explosion in the

use of maps derived from remote sensing (particularly those

from Landsat; Cohen and Goward, 2004) in ecological and

resource management applications. Often, these maps are

created or used without regard for, or knowledge of, a multitude

of issues that can impact their value for specific applications. In

this paper, we have discussed a number of critical issues, and

provided a few examples to illustrate their impact.
� I
s remote sensing the correct tool? Not all land cover

properties are directly observable with remote sensing. For

those that are not (e.g., amount of woody debris), it may still

be possible to infer something about those properties based

on observable vegetation characteristics (e.g., forest struc-

ture).
� W
hat are the differences between class-based and continuous

estimates? Maps based on classes can be limiting in their

applicability to a potentially wide variety of uses. Using

continuous models to derive maps facilitates a flexible

definition of classes, and thus a broader applicability.
� S
cale: what is it and what are the implications of data and

methodological choices related to scale? We discussed three

elements of scale: grain, extent, and minimum mapping unit,

and demonstrated the effects of these scale elements on map

quality and utility for a few specific purposes.
� M
ap errors: are they all the same? Nomap is perfectly correct,

and those derived from remote sensing are commonly quite
inaccurate.We discussed several issues related to this topic and

the implications of errors for a variety of potential uses. By

illustration, we demonstrated some differences between

‘‘user’s’’ and ‘‘producer’s’’ accuracy, class boundary fuzzi-

ness, and heterogeneity of accuracy-assessment sample data.

Perhaps the most important issue, however, is that of

expectations. Sellers of remote sensing technology must

manage expectations by resisting the desire to oversell their

wares (Meyer and Werth, 1990), and users need to better

understand the conditions under which remote sensing will

provide the information they desire.
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